
  

 

Abstract— sophisticated automatic incident detection (AID) 

technology plays a key role in contemporary transportation 

systems. Though many papers were devoted to study incident 

classification algorithms, few study investigated how to enhance 

feature representation of incidents to improve AID performance. 

In this paper, we propose to use an unsupervised feature 

learning algorithm to generate higher level features to represent 

incidents. We used real incident data in the experiments and 

found that effective feature mapping function can be learnt 

from the data crosses the test sites. With the enhanced features, 

detection rate (DR), false alarm rate (FAR) and mean time to 

detect (MTTD) are significantly improved in all of the three 

representative cases. This approach also provides an alternative 

way to reduce the amount of labeled data, which is expensive to 

obtain, required in training better incident classifiers since the 

feature learning is unsupervised. 

I. INTRODUCTION 

Many countries around the world suffer from increasing 
traffic congestions in their freeway networks. Recent report 
showed that traffic incident is one of the major contributors to 
traffic congestions. According to [1], 25% of the traffic 
congestions in the U.S. were caused by traffic incident. This 
number is 12% for Paris metropolitan region and 33% for 
German motorways. Delays in incident detection may not only 
deteriorate the traffic, it may also make the post-incident 
management such as emergency services and security services 
more difficult. Therefore, an automatic, high performance and 
reliable incident detection system is vital for both traffic 
reasons and safety reasons. Automatic incident detection (AID) 
is an area which has been investigated for several decades. It is 
well recognized that inductive loop is one of the most widely 
used technologies in practice to generate AID data [2]. 
Moreover, this technology is not only well understood but also 
provides an accurate and economical method for incident 
detection [1]. In this study, we focus on new AID method 
which is based on inductive loop data. 

Many studies have been devoted to algorithms improving 
AID by using inductive loop data. Among many kinds of 
algorithms studied, machine learning algorithms were most 
investigated in recent years. A number of variations of 
artificial neural network (ANN) [3][4][5][6], support vector 
machine (SVM) [7][8][9][10] and other algorithms were 
proposed and tested in the AID context. Significant 
improvements were obtained in the field by using machine 
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learning methods. There are two common characteristics 
among most of such studies. Firstly, for the feature 
representation which represents a detection moment at a 
particular area, only very limited amount of data was used. 
Secondly, they all use raw data generated by inductive loops in 
both upstream detectors and downstream detectors as feature 
representations for incident classification. This naturally 
introduced two potential issues. One is even if more data is 
available from detectors; it’s not clear whether by taking 
advantage of them shall benefit the incident detection 
performance. The other one is they only used raw feature 
representation and overlooked the higher level feature 
representation which may potentially better represent the 
incidents. Since much recent work in machine learning 
focused on unsupervised feature learning which learns high 
quality higher level feature representation from unlabeled data 
and such methods yielded promising results in the tasks such 
as classification [14][17][20], we believe such approach can 
fill this research gap in AID area. In this study we address the 
first issue by looking at how different choices of raw features 
influence the AID performance. Then we use unsupervised 
feature learning to learn higher level feature representation to 
improve incident detection performance. 

We carried out the experiment against the real traffic 
incident data and our result shows that there is a trade-off 
between false alarm rate (FAR) and mean time to detect 
(MTTD) when choosing different number of intervals (cycles) 
included in the raw feature. We also show that by adding 
higher level features learnt by the unsupervised feature 
learning, AID performance is significantly improved compare 
to all of the three representative raw feature choices. We also 
illustrate that this method is able to learn excellent feature 
mapping function from unlabeled data of a different test site. 
This opens a door to improve AID performance even if data 
from the current test site is not sufficient. 

The organization of this paper is the following. Section 2 
reviews the literature in both AID algorithms and 
unsupervised feature learning; then identifies the research gap. 
Section 3 introduces the unsupervised feature learning 
algorithm and research methodology. Section 4 shows and 
analyzes the experiment results. Section 5 summarizes the 
contributions and the limitations; then proposes future 
research directions. 

II. LITERATURE REVIEW 

A. Machine Learning in Automatic Incident Detection (AID) 

Many AID studies adopted machine learning methods 
since 1990s. Artificial neural network (ANN) was widely 
applied in the 90s. Many variations of ANN can be found in 
the literature. Cheu and Ritchie [3] compared three types of 
ANNs namely multi-layer feed-forward (MLF) neural 
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network, self-organizing feature map (SOFM) and adaptive 
resonance theory 2 (ART2). They found that MLF neural 
network performed best in terms of incident detection 
performance. It was also reported in [4] that constructive 
probabilistic neural network (CPNN) is able to achieve good 
AID performance with a much smaller network size, and it 
enjoys better application potential than basic probabilistic 
neural network (BPNN). In [5], the authors used genetic 
algorithm to optimize the parameter search for probabilistic 
neural network (PNN) and the result showed that this 
approach achieved better DR and FAR. A modified form of 
the Bayesian-based PNN was proposed in [6] and the study 
result indicated that this method enhances the universality and 
transferability of the detection algorithm. 

More recent studies focused on the application of support 
vector machine (SVM) in improving AID performance. In [7] 
the authors found that SVM generated better performance 
index (PI), a systematic measure of AID performance, than 
ANN. SVMs with polynomial kernel and radial basis function 
(RBF) kernel were compared in [8] and it was found that 
SVMs generate lower misclassification rate (MCR), higher 
DR and lower FAR compare to MLF neural network and PNN. 
By carefully selecting algorithm parameters, [9] shows SVM 
is able to outperform traditional AID algorithms. In [10], the 
authors used different strategies to combine SVMs to avoid 
the burden of choosing kernel functions and tuning the 
parameters. Result showed that this approach performs better 
than single SVM based AID algorithm in many aspects. 
Though other machine learning methods were also used in 
some studies, we found most of the AID research in the past 
decade applied ANNs and SVMs and made significant 
progress in terms of AID performance. It is also clear that 
among recent AID studies using machine learning methods, 
most of them used raw features which include direct values of 
the detection station average data accumulated over 30 
seconds in the classification. Up to five past intervals from 
upstream detectors and three past intervals from downstream 
detectors were usually adopted to represent one detection 
moment. By this convention, the resulting dimensionality of 
the features representing incident/non-incident moments is 
fairly low. 

B. Recent Advances in Unsupervised Feature Learning 

Learning internal representation of raw features is not a 
new idea. When back propagation algorithm was proposed to 
solve MLF neural network, it was explicitly indicated in [11] 
that the hidden layer is the internal representation of the input 
features. Principle component analysis (PCA) is another 
method seeks internal structure of data and is widely used in 
many unsupervised learning tasks. But none of these internal 
representations was endowed any semantic interpretation. 
Breakthrough was made in [12]. The authors showed that by 
maximizing the sparseness in the coding strategy, 
unsupervised learning algorithm is able to learn a feature 
mapping function which generates a complete set of localized, 
oriented receptive fields from natural images. These receptive 
fields are not only similar to those found in the primary visual 
cortex of mammals; they are also more effective feature 
representation for later tasks such as classification due to their 
higher degree of statistical independence. Since the process of 
learning the feature mapping function is purely unsupervised, 

such procedure is called unsupervised feature learning or 
unsupervised pre-training in general. 

Many other unsupervised feature learning methods were 
developed thereafter to learn multiple layers of higher level 
feature representation rather than a single layer. By stacking 
layers of features, deep architecture can be formed. 
Off-the-shelf unsupervised feature learning algorithms include 
sparse-coding [13], Restricted Boltzmann Machine (RBM) 
[14], sparse auto-encoder [15], denoising auto-encoder [16], 
K-means [17], etc. Such methods are also collectively called 
deep learning methods. Many recent studies reported that not 
only in image classification, state-of-the-art performance in 
other tasks like audio classification and text classification can 
also be achieved by using features generated by applying 
unsupervised feature learning in audio and text data [18][19]. 

In sum, unsupervised feature learning algorithms are able 
to learn feature mapping functions which map raw features 
(such as raw image pixels and audio frequencies) to higher 
level features. The higher level features are to be the better 
feature representation for later tasks such as classification. 
Though most of the studies focused on human perceptible data 
(e.g. image, audio and text), unsupervised feature learning is a 
general framework which can be applied to any data [20]. 

C.  Feature Engineering in AID and Research Gap 

To our knowledge, very few studies in AID area focused 
on feature engineering. In [21], the authors adopted a 
normalization technique as a preprocessor to improve the raw 
features. Improved incident detection results were obtained by 
applying the new features in a PNN classifier. Though this 
technique worked well, it is essentially a data normalization 
process under the AID context. We did not find feature 
learning study in the AID literature. Therefore, we believe 
there is a significant research gap in terms of feature learning 
in the AID context. In this research we propose to use 
unsupervised feature learning method to build higher level 
feature representation for incident detection data. By 
enhancing the raw features with higher level features, we 
expect to achieve better AID performance. Since learning 
feature mapping function is an unsupervised process, we also 
expect this new method shall potentially reduce the demand 
for labeled data in training better incident classifiers. 

III. METHODOLOGY AND ALGORITHM 

A.  Incident Data Used in the Study 

In this study we used real incident data collected in two 
sites namely I-405 northbound freeway and SR-22 eastbound 
freeway. Both of them are in the Orange County, California. 
The data contains real incidents in the entire year of 1998. 
Data includes both traffic volume and occupancy data 
averaged within the interval of 30 seconds. The data 
undertook the same pre-processing procedure as discussed in 
[5]. Generally speaking, the data contains multiple incident 
units. Each incident unit includes data for approximately 90 
intervals (about 45 minutes) from both upstream and 
downstream detectors in which about 60 of them are data 
before the incident, the rest 30 of them are incident data and 
perhaps some ones after the incident. There is no guarantee 
that incident units in the data obey the chronological order. 
Since “non-capacity-reducing” incidents were removed from 
the original data as in [5], the resulting I-405 dataset has 52 
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incident units for training, 129 incident units for testing. In the 
training set, there are 4629 intervals in all, 1408 of them (30%) 
are incidents. In the testing set, there are 11445 intervals in all, 
3699 of them (32%) are incidents. For the purpose of 
unsupervised feature learning, we did not use the labels of 
SR-22 dataset in this study. The SR-22 data we adopted in this 
study contains 4137 intervals in all. 

Only four numbers are strictly corresponding to one 
detection moment in the data, namely volume and occupancy 
values for upstream and downstream respectively. Since such 
features are not sufficient in incident classification, a very 
common choice is to include four more intervals (t to t-4) from 
upstream detector and two more intervals (t to t-2) from 
downstream detector for both volume and occupancy (we call 
this choice [4-2] pair. We will generally abbreviate this as 
“[x-y] pair” later). 

B. Performance Measures 

The following performance measures are used in this study. 
Most of them are conventional among many AID studies. 

 *100%
Total number of detected incidents

DR
Total number of actual incidents

  (1) 

 *100%
Total number of false alarm cases

FAR
Total number of intervals

  (2) 

*100%
Total time used to detect incidents

MTTD
Total number of detected incidents

       (3) 

 (1.01 )*( 0.001)*PI DR FAR MTTD    (4) 

Methods of computing detection rate (DR), FAR, MTTD 
and performance index (PI) are conventional as in many 
previous studies mentioned in the literature review. PI is a 
systematic measure which combines DR, FAR and MTTD 
[1][7]. This is used in the cross validation process as the 
optimization objective. We seek the lowest possible PI in the 
cross validation process. We slightly changed the equation of 
computing PI. Because DR could be 100% and FAR could be 
0% during the training, it would cause invalid PI during cross 
validation if either case happens. We adopted the equation in 
(4) to avoid the possible exceptions caused by such cases. 
According to [22], any attempt to use a single number to 
represent multiple measures will lose some information. It is 
believed that PI is one of the best possible measures in the 
training process to reflect systematic AID performance in 
model selection. 

C. Unsupervised Feature Learning Algorithm 

In this section, we will discuss the unsupervised feature 
learning algorithm and the ensuing incident classification 
process in more detail. The following six-step pipeline is used 
in this study to incorporate both unsupervised feature learning 
and incident classification. Similar pipeline was used in a 
number of unsupervised feature learning studies on various 
pattern recognition tasks [17]. 

1. Create an array with a number of 1z  dimensional 
unlabeled raw data vectors from the specified training 

data ( 12z   in this study, we will explain why this is 
the case in part C of this section). 

2. Extract random patches from unlabeled raw data 
vectors. 

3. Use an unsupervised feature learning algorithm to 
learn a feature mapping function from the patches. 

4. Prepare 1z  dimensional raw features from the 
training set. 

5. Apply the learnt feature mapping function to 

sub-patches within each 1z  dimensional raw 
feature representation of every labeled detection 
moment. Then to generate the higher level features for 
labeled data using pooling [17]. 

(Repeat step 1 to step 5 when necessary, e.g. do it for 
volume and occupancy raw features respectively) 

6. Enhance the raw features with the newly generated 
higher level features and use the enhanced features to 
train a SVM classifier to classify incidents. 

The input of step 1 is unlabeled data, it can either be the 
same dataset (left the labels unused) as which trains the 
incident classifier or data of other test sites. For example, if the 
unlabeled volume data from the upstream detector is 

( 12) ( 11) ( ) ( 1) ( ){ , ,..., , ,..., }t t t t t mV v v v v v    , where 
( )iv  is 

a real number corresponding to the averaged volume at 

moment i , vector 
( 12) ( ){ ,..., }t tv v

 is to be the first element 

of the array. In this case, there will be 1m  vectors in the 

entire array. In step 2, we randomly extract sub-patches from 
each vector. The dataset to be created after step 2 can be 

denoted as 
(1) (2) ( ){ , ,..., }nX x x x , where 

( )i dx  , 

d z  and d  is the dimension of sub-patches. Both d  and 
n  are parameters to be specified in the experiment. 

Though many unsupervised feature learning algorithms 
can be used in step 3, we purposefully used K-means 
algorithm in this study. K-means is not only an effective 
unsupervised feature learning algorithm [18], it is also 
straightforward to implement. Moreover, unlike other 
methods, K-means has only one parameter (number of 
centroids) to be fine-tuned in the feature learning stage. This 
fact significantly saves the training time. Since to our 
knowledge, this paper is the first one to study unsupervised 
feature learning in AID context, K-means algorithm is the 
ideal choice to work with. 

In step 3, we apply K-means clustering to learn K  

centroids 
kc  from the input data, for example from X . 

Given the learnt centroids, we construct the following feature 
mapping function:  

 
,( ) max{0, ( ) }k kf x      (5) 

where 
,

2|| ||k

k x c   , ( )   is the average of all the 

values in  , the input of the feature mapping function 
,x  is 

the raw feature for a detection moment to be prepared in step 4. 

The output of the feature mapping function is a K  

dimensional higher level feature vector in which the kth  

element is zero if the distance between 
,x  and 

kc  is above 
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average. This feature mapping function will generate higher 
level features with some degree of sparseness. 

We then prepare the raw features from which the higher 
level features are extracted by using the feature mapping 
function (5) later on. Such raw feature is prepared for each 

detection moment and the dimension of them are 1z , same 
as unlabeled data vectors. 

In step 5 we apply (5) for every sub-patch of 1z  
dimensional raw feature vector from step 4 with the stride of 

one. For instance, if 2z   and sub-patch size is 2, then we 
will need to apply (5) twice to two possible sub-patches of the 
feature vector. The output of this step is a set of higher level 
features given by sub-patches of raw feature. We then use a 
very straightforward pooling strategy, simply adding them up, 
to generate the final higher level features. 

It is noteworthy that step 1 through step 5 should be 
repeated four times since we need to do the same feature 
learning for volume and occupancy, both upstream and 
downstream. 

The final step is to attach the higher level features to the 
raw feature and train a SVM classifier to carry out incident 
classification. We use a L1 regularized SVM with RBF kernel 
in this study. Model selection is done by 10-fold cross 
validation during the training (data is randomized by incident 
units in the cross validation to keep all the performance 
measures computable). The optimization objective during 
cross validation is PI. 

D. Further Data Pre-processing for This Study 

In order to enable a completely fair comparison among all 
the experiments, we need to keep the number of incident and 
non-incident intervals the same across experiments for both 
training and testing set. However, by including more intervals 
in the raw features the number of total valid intervals will be 
decreased. For instance, if we include 6 intervals in the 
features, the 1st through 5th intervals of an incident unit will 
be invalid simply because there isn’t enough data ahead. 
Therefore, certain amount of intervals at the top for each 
incident unit has to be excluded in the training and testing set 
to ensure such fair comparison. The number of data needs to 
be excluded for each incident unit equals z . 

We specify 12z   in this study for three reasons. The 
first is we are able to find obvious performance pattern from 
[4-2] pair to [12-12] pair. The second reason is effective 
unsupervised feature learning could occur when the dimension 

of raw data is 1z . The third reason is after further data 
pre-processing using z equals 12, the total number of intervals 
in the training set is 4005 within which 1408 of them (35%) 
are incident data; in the testing set the number of total intervals 
are changed to 9897, within which 3699 of them (37%) 
represent incident data. Compare to the original data, the ratio 
between incident data and non-incident data is not 
significantly changed. 

IV. EXPERIMENTS AND ANALYSIS 

A. Finding Performance Patterns Using Raw Features 

Despite most of the previous studies chose to use [4-2] pair, 
there is no prove to guarantee that other choices such as [4-3] 
pair or [8-8] pair would perform strictly better or worse. 

Therefore, we would like to know the performance dynamics 
when different choices of raw features are adopted in the 
incident classification. This information is important in this 
study mainly because the possible choices of raw features are 
potentially enormous and we would like to find particular 
performance patterns among these choices so that we can pick 
representative pairs for the later comparisons. 

The first experiment was conducted by applying different 
choices of raw features in I-405 data, from [4-2] pair to [12-12] 
pair, and then directly feed into SVM for classification. We 
kept the number of intervals from upstream bigger or equals to 
the ones from downstream in the features. This aligns with the 
convention from previous studies. Same SVM as described in 
the previous section was used. PI was the optimization 
objective in cross validation during training. The following 
two figures illustrate the FAR and MTTD dynamics in the 
testing results. 

 

Figure 1.  FAR dynamics using different raw feature choices 

 

Figure 2.  MTTD dynamics using different raw feature choices 

From figure 1, it's not hard to discern that FAR improves 
with more intervals included in the features. It is also obvious 
from figure 2 that MTTD performs worse with more intervals 
included in the features. There is no obvious pattern found in 
terms of DR. Therefore, we can conclude from this experiment 
that there might not be any choice of [x-y] pair performs 
strictly better than others. There is a trade-off between FAR 
and MTTD. We also found the interval choice along the 
diagonal is representative. Therefore, in the following 
experiment, we pick [4-2] pair, [8-8] pair and [12-12] pair for 
further comparisons with the enhanced features. 
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B. Enhanced Features VS. Raw Features 

We carried out the unsupervised feature learning process 
described in section 3 and compared the results with the three 
representative choices of raw features using I-405 dataset. 
When comparing with raw feature [x-y] pair, new features 
were constructed by combining [x-y] pair itself and the higher 
level features learnt by unsupervised feature learning to ensure 
the fairness

1
. We regard the enhanced feature better than the 

raw feature if it shall outperform the raw feature in all of the 
three representative cases. Due to the randomness of K-means 
algorithm, we repeated each experiment for 50 times. The 
final results were obtained by averaging the 50 results

2
. Figure 

3 to figure 8 illustrate the experiment results. Values of DR 
and MTTD against different FAR values were obtained by 
using different number of persistent test (PT) [8]. 

 

Figure 3.  DR, raw feature [4-2] pair VS. enhanced features 

 

Figure 4.  MTTD, raw feature [4-2] pair VS. enhanced features 

 

Figure 5.  DR, raw feature [8-8] pair VS. enhanced features 

 
1 For instance, [4-2] pair itself was combined with higher level features to 

form the enhanced features when comparing with [4-2] pair raw feature. 
2 Number of centroids was 75 for volume, 15 for occupancy; patch size 

was 11 for volume, 6 for occupancy; number of patches sampled was 20000. 

Therefore, the dimension of the learnt higher level features was 180 

(75*2+15*2). Due to the randomness of patch sampling and K-means, SVM 
parameter selected by cross validation was usually different among 50 times. 

 

Figure 6.  MTTD, raw feature [8-8] pair VS. enhanced features 

 

Figure 7.  DR, raw feature [12-12] pair VS. enhanced features 

 

Figure 8.  MTTD, raw feature [12-12] pair VS. enhanced features 

Several observations can be summarized from the results. 
First, by using the enhanced features, strictly better (higher) 
DR was obtained when FAR is ranged 0.1% to  0.7%. In some 
cases, for instance when FAR is 0.2% in figure 3, DR 
generated by the enhanced features is 10% higher than the one 
generated by raw features. Second, strictly better (lower) 
MTTD was also obtained for a large range of FAR by using 
the enhanced features. For example, we can observe from 
figure 6 that MTTD is improved by 45 seconds when FAR is 
around 0.25%. Third, by keeping the same DR and MTTD, 
better (lower) FAR is obtained.  

C. Learn Feature Mapping Function From Different Site 

In the third experiment, we conducted the unsupervised 
feature learning described in section 3 by using the unlabeled 
data from SR-22 dataset to learn the feature mapping function 
(all other settings were the same as those in experiment 2). 
Then we extracted the higher level features from I-405 
training set and trained the classifier. Testing was also 
performed using I-405 dataset. The results are listed in the 
following table in which case 1(b), case 2(b) and case 3(b) 
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correspond to [4-2] pair based, [8-8] pair based and [12-12] 
pair based enhanced features. Case 1(a), case 2(a) and case 3(a) 
are their corresponding cases using the original I-405 dataset. 
Three rows in each performance measure show the results for 
pt=0 to pt=2. 

TABLE I.  RESULTS WHEN USING UNLABELED DATA FROM OTHER SITE 

 Case

1(a) 

Case

1(b) 

Case

2(a) 

Case

2(b) 

Case

3(a) 

Case

3(b) 

DR (%) 

97.02 97.20 97.28 97.42 97.37 97.55 

96.55 96.43 96.74 96.83 96.68 96.91 

94.68 94.35 95.20 94.77 95.22 94.51 

FAR (%) 

1.215 1.274 1.039 1.100 0.960 0.975 

0.782 0.812 0.668 0.683 0.631 0.628 

0.521 0.536 0.487 0.504 0.445 0.454 

MTTD (30 

seconds) 

3.669 3.709 3.731 3.777 3.944 3.877 

5.066 5.031 5.117 5.122 5.218 5.296 

6.465 6.441 6.352 6.369 6.447 6.458 

CR (%) 87.14 87.03 88.19 88.11 88.25 88.17 

CR stands for classification rate 

The results are encouraging since we did not discern much 
difference if the data from SR-22 is used to learn the feature 
mapping function. If unlabeled data is not sufficient in one site, 
this method opens a door to enable feature learning from data 
elsewhere. 

V. CONCLUSION AND FUTURE RESEARCH 

We conclude the paper and summarize the contributions as 
the following. First, by using unsupervised feature learning we 
were able to construct enhanced features and improve AID 
performance for all the performance measures. Secondly, we 
showed that effective unsupervised feature learning for AID 
can not only take place by using the data from the same test 
site as that in incident classification, it is also valid to use 
unlabeled data from other test site. This obviously enriches the 
potential training data source. The direct consequence of these 
two results is that this approach may potentially reduce the 
number of labeled data required in training an incident 
classifier which achieves good detection performance. This is 
preferable because labeled AID data is expensive and difficult 
to get.  

The limitations of this paper are two-fold. First, we only 
used one unsupervised feature learning method and didn’t 
compare it with others. Second, we didn’t visualize the higher 
level features and provide physical interpretations of them. 
This reduces the theoretical contribution of the study. We 
propose to work on these limitations in the future research. 

To our knowledge, this is the first study to apply 
unsupervised feature learning in AID research.  This approach 
shall not only provide an alternative way to enhance AID 
performance, we believe it shall also provide rich future 
research opportunities in the field. Other than the issues in the 
limitations, future research may also study how different 
parameters in the feature learning algorithm influence 
performance. Building deep architectures for AID is also 
within our study plan. Transferability of such algorithms is 
also an interesting future research direction. 
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