
On Vectorization of Deep Convolutional Neural Networks for Vision Tasks

Jimmy SJ. Ren Li Xu
Lenovo Research & Technology

http://vcnn.deeplearning.cc
jimmy.sj.ren@gmail.com xulihk@lenovo.com

Abstract
We recently have witnessed many ground-breaking re-
sults in machine learning and computer vision, gen-
erated by using deep convolutional neural networks
(CNN). While the success mainly stems from the large
volume of training data and the deep network architec-
tures, the vector processing hardware (e.g. GPU) undis-
putedly plays a vital role in modern CNN implemen-
tations to support massive computation. Though much
attention was paid in the extent literature to understand
the algorithmic side of deep CNN, little research was
dedicated to the vectorization for scaling up CNNs. In
this paper, we studied the vectorization process of key
building blocks in deep CNNs, in order to better under-
stand and facilitate parallel implementation. Key steps
in training and testing deep CNNs are abstracted as ma-
trix and vector operators, upon which parallelism can be
easily achieved. We developed and compared six imple-
mentations with various degrees of vectorization with
which we illustrated the impact of vectorization on the
speed of model training and testing. Besides, a unified
CNN framework for both high-level and low-level vi-
sion tasks is provided, along with a vectorized Mat-
lab implementation with state-of-the-art speed perfor-
mance.

Introduction
Deep convolutional neural network (CNN) has become a
keen tool in addressing large scale artificial intelligence
tasks. Though the study of CNN can be traced back to late
1980s (LeCun et al. 1989; 1990), the recent success of deep
CNN is largely attributed to the concurrent progresses of the
two technical streams. On the one hand, the new deep CNN
architecture with elements such as Dropout (Hinton et al.
2012; Krizhevsky, Sutskever, and Hinton 2012), DropCon-
nect (Wan et al. 2013), Rectified Linear Units-ReLU (Nair
and Hinton 2010) as well as new optimization strategies
(Dean et al. 2012) have empowered deep CNN with greater
learning capacity. On the other hand, the rapid advances and
democratization of high performance general purpose vector
processing hardware, typified by graphics processing unit
(GPU), unleashes the potential power of deep CNN by scal-
ing up the network significantly.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Various infrastructures were used in scaling up deep
CNNs, including GPU (Coates et al. 2013), distributed CPU
based framework (Dean et al. 2012), FPGA (Farabet et al.
2009), etc. Though the implementation details among those
approaches differ, the core insight underlying the idea of
scaling up deep CNN is parallelization (Bengio and Le-
Cun 2007) in which vectorization technique is the funda-
mental element. While the consecutive distinguished perfor-
mance of GPU trained CNNs in the ImageNet visual recog-
nition challenge (Krizhevsky, Sutskever, and Hinton 2012;
Russakovsky et al. 2013) as well as the reported results in
many studies in the literature justify its effectiveness (Jia
et al. 2014; Sermanet et al. 2013), the published literature
did not provide sufficient insights on how the vectorization
was carried out in detail. We also found there is no previ-
ous study to answer how different degrees of vectorization
influence the performance of deep CNN, which is, however,
crucial in finding the bottlenecks and helps to scale up the
network architecture. We believe these questions form a sig-
nificant research gap and the answer to these questions shall
shed some light on the design, tuning and implementation of
vectorized CNNs.

In this paper, we reinterpret the key operators in deep
CNNs in vectorized forms with which high parallelism can
be easily achieved given basic parallelized matrix-vector op-
erators. To show the impact of the vectorization on the speed
of both model training and testing, we developed and com-
pared six implementations of CNNs with various degrees
of vectorization. We also provide a unified framework for
both high-level and low-level vision applications including
recognition, detection, denoise and image deconvolution.
Our Matlab Vectorized CNN implementation (VCNN) will
be made publicly available on the project webpage.

Related Work
Efforts on speeding up CNN by vectorization starts with its
inception. Specialized CNN chip (Jackel et al. 1990) was
built and successfully applied to handwriting recognition in
the early 90s. Simard et al. (2003) simplified CNN by fusing
convolution and pooling operations. This speeded up the net-
work and performed well in document analysis. Chellapilla
et al. (2006) adopted the same architecture but unrolled the
convolution operation into a matrix-matrix product. It has
now been proven that this vectorization approach works par-

ticularly well with modern GPUs. However, limited by the
available computing power, the scale of the CNN explored
at that time was much smaller than modern deep CNNs.

When deep architecture showed its ability to effectively
learn highly complex functions (Hinton, Osindero, and Teh
2006), scaling up neural network based models was soon
becoming one of the major tasks in deep learning (Bengio
and LeCun 2007). Vectorization played an important role in
achieving this goal. Scaling up CNN by vectorized GPU im-
plementations such as Caffe (Jia et al. 2014), Overfeat (Ser-
manet et al. 2013), CudaConvnet (Krizhevsky, Sutskever,
and Hinton 2012) and Theano (Bergstra et al. 2010) gener-
ates state-of-the-art results on many vision tasks. Albeit the
good performance, few of the previous papers elaborated on
their vectorization strategies. As a consequence, how vec-
torization affects design choices in both model training and
testing is unclear.

Efforts were also put in the acceleration of a part of the
deep CNN from algorithmic aspects, exemplified by the sep-
arable kernels for convolution (Denton et al. 2014) and the
FFT speedup (Mathieu, Henaff, and LeCun 2013). Instead
of finding a faster alternative for one specific layer, we fo-
cus more on the general vectorization techniques used in all
building blocks in deep CNNs, which is instrumental not
only in accelerating existing networks, but also in providing
guidance for implementing and designing new CNNs across
different platforms, for various vision tasks.

Vectorization of Deep CNN
Vectorization refers to the process that transforms the orig-
inal data structure into a vector representation so that the
scalar operators can be converted into a vector implementa-
tion. In this section, we introduce vectorization strategies for
different layers in Deep CNNs.

Figure 1 shows the architecture of a typical deep CNN for
vision tasks. It contains all of the essential parts of modern
CNNs. Comprehensive introductions on CNN’s general ar-
chitecture and the recent advances can be found in (LeCun
et al. 1998) and (Krizhevsky, Sutskever, and Hinton 2012).

We mark the places where vectorization plays an impor-
tant role. “a” is the convolution layer that transforms the in-
put image into feature representations, whereas “b” is the
one to handle the pooling related operations. “c” represents
the convolution related operations for feature maps. We will
see shortly that the vectorization strategies between “a” and
“c” are slightly different. “d” involves operations in the fully
connected network. Finally, “e” is the vectorization opera-
tion required to simultaneously process multiple input sam-
ples (e.g. mini-batch training). It is worth noting that we
need to consider both forward pass and back-propagation
for all these operations.

Vectorizing Convolution
We refer to the image and intermediate feature maps as f ,
one of the convolution kernels as wi, the convolution layer
can be typically expressed as

f l+1
i = σ(wl

i ∗ f l + bli), (1)

a
b c

d

e

convolution pooling convolution pooling fully connected

Figure 1: Convolutional Neural Network architecture for vi-
sual recognition.

where i indexes the ith kernel. l indexes the layer. bl is the
bias weight. ∗ is the convolution operator. For vision tasks,
f can be 2- or 3-dimension. The outputs from previous layer
can be deemed as one single input f l. σ is the nonlinear
function which could be ReLU, hyperbolic tangent, sigmoid,
etc. Adding bias weight and applying nonlinear mapping
are element-wise operations which can be deemed as al-
ready fully vectorized, i.e. the whole feature vector can be
processed simultaneously. Contrarily, the convolution oper-
ators involve a bunch of multiplication with conflict mem-
ory access. Even the operators are parallized for each pixel,
the parallelism (Ragan-Kelley et al. 2013) to be exploited is
rather limited: compared to the number of computing units
on GPU, the number of convolution in one layer is usually
smaller. A fine-grained parallelism on element-wise multi-
plication is much preferred, leading to the vectorization pro-
cess to unroll the convolution.

In what follows, all the original data f , b and w can be
viewed as data vectors. Specifically, we seek vectorization
operators ϕc() to map kernel or feature map to its matrix
form so that convolution can be conducted by matrix-vector
multiplication. However, a straight forward kernel-matrix,
image-vector product representation of convolution is not
applicable here, since the kernel matrix is a sparse block-
Toeplitz-Toeplitz-block one, not suitable for parallelization
due to the existence of many zero elements. Thanks to the
duality of kernel and feature map in convolution, we can
construct a dense feature-map-matrix and a kernel-vector.
Further, multiple kernels can be put together to form a ma-
trix so as to generate multiple feature map outputs simulta-
neously,

[f l+1
i]i = σ(ϕc(f

l)[wl
i]i + [bli]i). (2)

Operator []i is to assemble vectors with index i to form a
matrix.

Backpropagation The training procedure requires the
backward propagation of gradients through ϕc(f

l). Note
that ϕc(f

l) is in the unrolled matrix form, different form the
outputs of previous layer [f li]i. An inverse operator ϕ−1

c ()
is thus required to transform the matrix-form gradients into
the vector form for further propagation. Since ϕc() is a one-
to-many mapping, ϕ−1

c () is a many-to-one operator. Fortu-
nately, the gradient update is a linear process which can also
be processed separately and combined afterwards.

Matlab Practice Our matlab implementation to vectorize
the input image is shown in Fig. 2. Specifically, we first crop
the image patches base on the kernel size and reorganize

1

2

3

4

5

6

7

8

9

1

2 3

4

5

6

7

8 9

4

5

2

5

5

6

8

k11 k 13k 12 k 14

k21 k 23k 22 k 24

k 31 k 33k 32 k 34

kernel1

kernel2

kernel3

f11 f13f12 f14

f21 f23f22 f24

f31 f33f32 f34

=

map1

map2

map3

Input

Figure 2: Strategy to vectorize convolution. Illustration of
the way to covolve a 3x3 input image with three 2x2 kernels
and generates three 2x2 feature maps.

1

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

9
1 2

3

4

5

6

7

8

9
1

1

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

9

1

3

4

5

6

7

8

9

1

2

1

2 3

4

5 6

7

8 9

2

5

4

5

5

6

8

2

3 4

5

6 7

8

9 1

3

6

5

6

6

7

9

3

4 5

6

7 8

9

1 2

4

7

6

7

7

8

12

3 4

7

8

8

9

3 3

4 5

8

9

9

1

4

1

2 3

4

5 6

7

8 9

2

5

4

5

5

6

8

2

3 4

5

6 7

8

9 1

3

6

5

6

6

7

9

3

4 5

6

7 8

9

1 2

4

7

6

7

7

8

1
set to zeros set to zeros

(a)

(b)

(c)

(d)

Figure 3: Strategy to vectorize convolution with a feature
map. Illustration of the way to convolve a 3x3x3 feature
map.

them into columns, as indicated by the dotted bounds. Con-
volution kernels are arranged by rows in another matrix. We
can see that the product of these two matrices will put all the
convolved feature maps in the resulting matrix, one feature
map per row. ϕc() here can be efficiently implemented by
the im2col() functions in Matlab on both GPU 1 and CPU.
We note that the feature map vector here are transpose of fi,
simply because the function of im2col().

Convolution with the feature map An alternative practice
is needed to handle convolution of the feature map (e.g. “c”
in Fig. 1). This is because we need to first combine [f li]i
to a higher dimensional f l and then perform convolution.
One example is illustrated in Fig. 3, where we need to com-
bine 3 3 × 3 feature maps to a 3 × 3 × 3 one and apply
ϕc(). In practice, we could first apply three times ϕc() to f li
and then combine the results. We found it less efficient since
the actual number of feature map is much larger. To exploit
more parallelism, we try to reorganize the data and apply
only once the vectorization operator ϕc().

In Fig. 3, we first reshape column vectors [fi]i (a) back to
a 2D matrix and put them side by side (b). This operation
is cheap since it just changes the representation of the data
but does not rearrange it. It allows us to vectorize all the
feature maps in a holistic way (c). Since only valid region
is considered during convolution, we set all the redundant

1We used a custom version of im2col() for GPU.

1 5 62 3 74 8

14

14
22

22

6
8

for average pooling

for max pooling
1 5 62 3 74 8

6
8

Figure 4: Strategy to vectorize pooling. Illustration of pool-
ing for one 4x4 feature map.

columns to zeros. The final ϕc(f) is obtained by rearranging
the intermediate result in (c). Since redundant columns are
involved, we use Matlab function accumarray() to handle
many-to-one rearrangement.

One may note that the operator ϕ−1
c () is a many-to-one

mapping as well. So it can be efficiently implemented by
accumarray(), for backpropagation.

Vectorizing Pooling
It is inefficient to carry out the pooling separately for each
feature map, so the goal here is to simultaneously process
those separate operations by vectorization. The pooling op-
erator can be abstracted as

f l+1 = σ(ϕp(f
l) + bl), (3)

where ϕp() is a many-to-one mapping with a defined opera-
tion corresponding to max- or average- pooling.

Due to the information loss, the inverse operator ϕ−1
p () is

not well defined. We simply use nearest neighbor upscaling
for approximation during backpropagation.

The pooling operations, both average pooling and max
pooling, can be thought of as a vector accumulation process
guided by a pre-defined index map, which can be similarly
implemented by accumarray(). The only difference for max
pooling is a max function is involved. For overlapping pool-
ing, we could insert the overlapped elements into the feature
map and then apply the same pooling strategy.

Vectorizing Fully Connected Layers
The fully connected layers (i.e. “d” in Fig. 1), can be written
in a dense matrix-matrix multiplication. Thus both the feed
forward and backpropagation are naturally vectorized, in a
unified matrix-matrix form.

Vectorization for Mini-batches
Our vectorization strategy can be directly extended to sup-
port mini-batch training. Given a batch of samples indexed
by j, the mini-batch training with a convolution layer is
given by

[f l+1
i]i = σ([ϕc(f

l
,j)]j [w

l
i]i + [bli]i), (4)

where []j is to assemble the matrix of different samples.
Figure 5 shows the Matlab implementation of batch mode

for the same operation as in Fig. 2 with the batch size of 2.
Both samples in the input batch are vectorized and the out-
puts are arranged horizontally. We can show that the prod-
uct of the same kernel matrix as in Fig. 2 and this matrix is

1

2 3

4

5

6

7

8 9

4

5

2

5

5

6

8

k 11 k13k 12 k14

k 21 k 23k 22 k 24

k 31 k 33k 32 k 34

kernel1

kernel2

kernel3

f11 f13f12 f14

f21 f23f22 f24

f31 f33f32 f34

=

map1

map2

map3

Input

1

2 3

4

5

6

7

8 9

4

5

2

5

5

6

8

7

8

9

1

2

3

4

5

6

7

8

9

f’11 f’13f’12 f’14

f’21 f’23f’22 f’24

f’31 f’33f’32 f’34

sample 1 sample 2

feature maps
for sample 1

feature maps
for sample 2

Figure 5: Strategy to vectorize mini-batch operations.

able to simultaneously generate feature maps for both sam-
ples. Note that if an input sample of a convolutional layer
has multiple channels, we could treat it as a multi-channel
feature map as shown in Fig. 3.

Experiments and Analysis
The goal of the experiments presented in this section is to
understand the role of vectorization in training and testing
CNNs as well as its limitation.

In order to make our experiment results of high validity
and relevancy, we compared the training and testing speed
of our fully vectorized implementation with Caffe and Cu-
daconvnet, the speed is competitive, if not faster in all the
tested cases.

Comparing Different Degrees of Vectorization
In this section, we seek to understand the role of vectoriza-
tion by comparing six CNN implementations. These imple-
mentations differ in the degree of vectorization, which is il-
lustrated in table 1. Imp-1 is a least vectorized one, Imp-2
naively parallelize the process of batch samples by adding a
parallel for-loop to Imp-1 whilst Imp-6 is a fully vectorized
implementation guided by the approaches we introduced.
When working with one particular implementation we also
observe how results change with network scales. The reason
is we would like to examine different vectorization strate-
gies with both small scale network and large scale ones and
we are particularly interested in large scale CNNs since it is
more relevant to recent advances in the field.

We consider three scales. Scale 1 is a small model, it is
very similar to the standard LeNet (LeCun et al. 1998), but
with more feature maps in the convolutional layers2, ReLU
nonlinearity and cross-entropy error. Scale 2 is a large net-
work with about 60 million trainable parameters which is
comparable to AlexNet (Krizhevsky, Sutskever, and Hinton
2012). However, the architecture is tailored for the purpose
of this study. First, we would like to keep the number of
conv layer and the number of fully connected layer balanced
so that we shall have a fair performance breakdown. It also
allows us to directly compare the results with Scale 1. Sec-
ond, to enable a fair comparison, we would like to have a
unified vectorization scheme for convolution throughout the
network. Thus unlike AlexNet which uses a stride 4 convo-
lution in the first conv layer and stride 1 thereafter, all con-
volution operations use the same stride of 1 in our model.

2This setting of conv layer is the same in Caffe’s MNIST exam-
ple. We have 2 fully connected hidden layers.

Vec ele Fu-co Conv Pool Feat Batch
Imp-6 X X X X X
Imp-5 X X X X
Imp-4 X X X
Imp-3 X X
Imp-2 X X
Imp-1 X

Table 1: Different vectorized elements included in the six
CNNs. Fu-co: fully connected layer, Conv: convolutional
layer, Pool: pooling layer, Feat: feature map pachification,
Batch: vectorize for batch. A tick indicates the element is
vectorized

The consequences of those are, compare to AlexNet, scale 2
tends to have more feature maps in the conv layer but smaller
size for the input images. We set the number of output units
to 1000 as in AlexNet. Scale 3 is a larger network with
10,000 output units. This pushes the number of trainable pa-
rameters to 94 million, keeping other settings the same as
scale 2. The performance on GPU3 (in terms of the number
of images to be processed per second) of the six CNNs with
different network scales during training is illustrated in table
2.

We are able to observe several insights from the figures.
First of all, the results indicates that vectorization is vital to
CNN’s speed. We can see that Imp-1 is very slow and a naive
parallelization (Imp-2) seems work poorly on GPU. Espe-
cially for the large scale networks, Imp-1 and Imp-2 are sim-
ply too slow to be practical. When training a small network,
a fully vectorized CNN (Imp-6) is more than 200 times
faster than the naive parallelization version during training
and more than 100 times faster during testing. This accel-
eration is going to be more significant for bigger networks
since Imp-1 and 2 scale poorly.

Second, all vectorization element we introduced con-
tribute significantly to the final performance, during both
training and testing. One interesting insight is the contribu-
tion of vectorizing pooling and feature map patchification
seems to increase with the scale of the network. For instance,
in table 2, Imp-4 (vectorize for pooling) has a 1.9x speed up
than Imp-3 under scale 1 but a 4.5x speed up and a 4.3x
speed up under scale 2 and scale 3 respectively. Same phe-
nomenon happens for testing. This strongly indicates that
the vectorization strategy for those two elements scales well
with the size of the network.

#img/sec Imp-1 Imp-2 Imp-3 Imp-4 Imp-5 Imp-6
Scale 1 1 6.1 15.3 29.5 85.4 1312.1
Scale 2 n/a n/a 2.4 11 42.3 188.7
Scale 3 n/a n/a 2.3 10 34.3 161.2
∗ batch size is 100 for scale 1 and 200 for scale 2 and 3.

Table 2: Training performance of the six CNNs (#images to
be processed per second). Scale1: small model, 10 output
units; Scale2: large model, 1000 output units, Scale3: larger
model, 10000 output units.

3GeForce GTX 780 Ti, same card was used in the rest of the
experiments.

On the other hand, we also observe that vectorizing batch
processing brings more than 10x speed up for small models
but only 3x to 5x speed up for large scale models. The con-
tribution of vectorizing batch processing to the performance
seems to decrease when scaling up the network though the
speed up remains significant. We further investigate this phe-
nomenon in the next section which leads to a strategy to
achieve optimal training and testing speed.

In Search of Optimal Speed
We investigated the puzzle of decelerating speed up by scru-
tinizing the performance against different batch sizes. The
results are presented in table 3 and 4 for training and testing
respectively.

#img/sec b=1 b=100 b=200 b=300 b=400
Scale 1 88.5 1312 1450.9 1574.2 1632.8
Scale 2 41.9 136.9 188.7 192.3 106.3
Scale 3 34.3 123.5 161.3 163.9 91

Table 3: Training performance of Imp-6 against different
batch sizes (#images to be processed per second).

#img/sec b=1 b=100 b=200 b=400 b=600
Scale 1 151.5 1812.6 1878.4 2023.5 2192.2
Scale 2 75.8 222.2 270.2 285.7 103.1
Scale 3 74 212.8 256.4 277.8 89.2

Table 4: Test performance of Imp-6 against different batch
sizes (#images to be processed per second).

In table 3, we can see that for the small model (scale 1) the
acceleration brought by each adjacent batch size increase is
14x, 1.1x, 1.08x and 1.03x. The acceleration obtained via
the increase of batch size seems to be rapidly vanishing.
For the large model (scale 2), the first three acceleration ra-
tio are 3.2x, 1.3x and 1.02x, demonstrating the same van-
ishing trend. Further increase in batch size even leads to a
performance degradation instead. Same situation occurs for
the larger model (scale 3). Though the ability of processing
192 images/second for training and 285 images/second for
testing with our commodity GPU for the scale 2 network is
promising, this result still indicates that there is some scal-
ing limitation within the vectorization for batch processing.
Similar results in table 4 seems to further suggest that such
limitation is shared between training and testing. In order to
completely understand the rationale under the hood, we have
to resort to a detailed performance breakdown.

Performance Breakdown and Limitation. We decom-
pose the whole training procedure into the following com-
ponents. They are 1) conv layers; 2) pooling layers; 3) fully
connected layers; 4) others (e.g. ReLU, cost). We distinguish
the statistics between forward pass and back-propagation,
therefore 8 components to look at.

Figure 6 illustrates the performance break down (in terms
of the proportion of computing time in processing one batch)
during training of the two representative cases from our
largest network (scale 3) in the experiment. Batch size is

(a) (b) (c)

Figure 6: Performance break down. (a) Scale 3 network,
batch size = 1. (b) Scale 3 network, batch size = 200. (c)
Scale 3 network, batch size = 300. conv: conv layers, pool:
pooling layers, full: fully connected layers, other: other op-
erations, f : forward pass, b: back-propagation.

1 for Fig. 6(a), 200 for Fig. 6(b) and 300 for Fig. 6(c). We
can observe from Fig. 6(a) that 44% of the overall time was
used in processing the fully connected layers. It was in fact
the biggest consumer of the computing time for this batch
size. We also see that the time spent on full b is significantly
more than full f. This makes sense because it involves larger
matrix multiplication and larger transform matrix than that
in the forward pass. The second largest consumer of time is
the convolution layers and we can see that the time spent in
forward pass and back-propagation is reasonably balanced.

However, the situation we found in Fig. 6(b) and Fig. 6(c)
is very different. One obvious character is, when increasing
the batch size, the time costs by the conv layers is now con-
siderably more than the fully connected layers. While the
proportion between full f and full b among the three batch
sizes roughly remains the same, we found conv f spent much
more time than conv b for large batch sizes. This indicates
the scaling limitation is within the conv f when vectoriz-
ing for batch processing. A further scrutiny on this issue
shows that the limitation is caused by the following two fac-
tors namely the memory overhead in handling multiple sam-
ples and the overhead caused by invoking patchification on
bigger samples. While there might be alternative strategies
to vectorize batch processing, we argue that the aforemen-
tioned overhead is hard to be completely avoided.

Finding the Optimal Speed. We found the observations
from Fig. 6 are also valid for scale 1 and scale 2 networks,
but with an important difference. For small networks like the
scale 1 network, the acceleration brought by batch process-
ing shall be valid for very big batch sizes (e.g. 1000) whilst
for large networks batch size needs to be chosen carefully
or else the speed degradation like we saw in table 3 and 4
shall occur before the network hits the GPU memory ceil-
ing. This suggests that given a network design choosing an
appropriate batch size may be vital in achieving the opti-
mal speed. Based on our scale 2 network, we select 10 other
networks by randomly adjusting several parameters such as
filter size, number of feature maps, number of output units
and sigmoid function, etc. We run these networks for both
training and testing by adjusting the batch sizes to see if this
contention is generally applicable for large networks.

(a) (b)

Figure 7: Speed of 10 randomly selected networks. X axis,
batch size. Y axis, number of images to be processed per
second. (a) for training. (b) for testing.

Figure 7 confirms our aforementioned contention for large
networks and makes the importance of choosing an appro-
priate batch size obvious. First, it suggests that the optimal
batch size among different network parameters is usually
quite different. Directly adopting a batch size from a previ-
ous set of network parameters may lead to significantly in-
ferior speed. Second, it also suggests that the optimal batch
size between the training stage and the testing stage is also
different, even if for the same network. A naive adoption
of the batch size from the training stage is often not opti-
mal and leads to considerable speed loss. These findings has
direct implications in building real-time systems in which
optimization for model testing is the key.

Unification of High/Low Level Vision Tasks
Despite the rapid adoption of deep CNN in addressing var-
ious kinds of high level computer vision tasks typified by
image classification and object localization, other problems
such as detecting objects of different shapes in real-time
seem still a problem under investigation. On the other hand,
we observed that there are a few very recent studies (Xu et al.
2014; Eigen, Krishnan, and Fergus 2013) successfully used
deep CNN in various low level vision tasks such as image
deblurring and denoising, etc. Though the domain knowl-
edge required to build those new networks substantially dif-
fer from that used in addressing high level vision tasks, same
vectorization principles presented in this paper will apply.

More interestingly, the same vectorization principle
across those tasks actually gives us a chance (perhaps for
the first time) to unify both high level vision tasks and low
level vision tasks in a single computational framework. In
this section, we introduce the application of our VCNN im-
plementation in tasks seemingly of distinct fields namely,
image denoising and deblurring (low level vision) as well as
multi-object detection (high level vision).

CNN for Image Processing
Image processing tasks do not require pooling and fully con-
nected layers in general. To verify the effectiveness of the
proposed vectorized framework, we implemented a network
architecture by simply removing the pooling and fully con-
nected layers from Fig. 1 and trained the network with syn-
thesized clear-noisy image pairs. One of the denoise result

is given in Fig. 8. Another sample application of our vector-
ized CNN is the recent proposed image deconvolution (Xu
et al. 2014). Result is shown in Fig. 9.

Figure 8: Application in image denoising.

Figure 9: Application in image deconvolution.

Novel Training Scheme for Multi-object Detection
Conventional image classifiers are usually trained by image
samples with equal sizes. This imposes a critical limitation
when applying it in detection. For instance, it is reasonable
to put a human face sample in a square image, but doing so
for non-squared objects (e.g. shoes) tends to include more
background content thus introduces more noise which is
detrimental to accurate and efficient object detection. One
possible alternative is to formulate object detection as a re-
gression problem (Szegedy, Toshev, and Erhan 2013), how-
ever, it requires a very large amount of data and usually very
big models to capture the variety of the possible patterns.

Figure 10: Application in real time multi-object detection.
Shoes review videos are from Youtube.

Using VCNN, we were able to train a single image clas-
sifier but with heterogeneous input sizes by using vectoriza-
tion. The key insight is heterogeneous inputs can actually
share all the weights in a CNN except the ones in the con-
nection between conv layer and fully connected layer. This
approach not only avoids the background noise but also be-
ing a lot more lightweight than the regression approach. We

successfully applied it in a detection system which runs in
real-time. We can show that this approach tends to have less
false alarms and works efficiently with multi-scale detection
through vectorization.

Conclusion
In this paper, we elaborate several aspects on vectorization
of deep CNN. First, we present the vectorization steps of
all essential parts of implementing deep CNNs. The vec-
torization steps are further exemplified by Matlab practices.
Second, we have developed and compared six CNN imple-
mentations with different degrees of vectorization to anal-
ysis the impact of vectorization on speed. Third, based on
the practices, we provide a unified framework for handling
both low-level and high-level vision tasks. Experiments on
various applications including image denoise, decovolution
and real-time object detection demonstrated the effective-
ness of the proposed strategies. As the introduced vector-
ization techniques are general enough, our future direction
includes optimization for different hardware or cloud plat-
forms.

References
Bengio, Y., and LeCun, Y. 2007. Scaling learning algorithms
towards ai. Large-scale kernel machines 34:1–41.
Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu,
R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; and Bengio,
Y. 2010. Theano: a cpu and gpu math compiler in python.
In Python in Science Conf, 1–7.
Chellapilla, K.; Puri, S.; Simard, P.; et al. 2006. High perfor-
mance convolutional neural networks for document process-
ing. In International Workshop on Frontiers in Handwriting
Recognition.
Coates, A.; Huval, B.; Wang, T.; Wu, D. J.; Catanzaro, B. C.;
and Ng, A. Y. 2013. Deep learning with COTS HPC sys-
tems. In ICML, 1337–1345.
Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Le,
Q. V.; Mao, M. Z.; Ranzato, M.; Senior, A. W.; Tucker, P. A.;
Yang, K.; and Ng, A. Y. 2012. Large scale distributed deep
networks. In NIPS, 1232–1240.
Denton, E.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting linear structure within convo-
lutional networks for efficient evaluation. arXiv preprint
arXiv:1404.0736.
Eigen, D.; Krishnan, D.; and Fergus, R. 2013. Restoring an
image taken through a window covered with dirt or rain. In
NIPS.
Farabet, C.; Poulet, C.; Han, J. Y.; and LeCun, Y. 2009.
Cnp: An fpga-based processor for convolutional networks.
In International Conference on Field Programmable Logic
and Applications, 32–37.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. R. 2012. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Hinton, G.; Osindero, S.; and Teh, Y.-W. 2006. A fast
learning algorithm for deep belief nets. Neural computation
18(7):1527–1554.
Jackel, L.; Boser, B.; Denker, J.; Graf, H.; Le Cun, Y.;
Guyon, I.; Henderson, D.; Howard, R.; Hubbard, W.; and
Solla, S. 1990. Hardware requirements for neural-net opti-
cal character recognition. In International Joint Conference
on Neural Networks, 855–861.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 1106–1114.
LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard,
R. E.; Hubbard, W.; and Jackel, L. D. 1989. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation 1(4):541–551.
LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard,
R. E.; Hubbard, W.; and Jackel, L. D. 1990. Handwritten
digit recognition with a back-propagation network. In NIPS.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Mathieu, M.; Henaff, M.; and LeCun, Y. 2013. Fast train-
ing of convolutional networks through ffts. arXiv preprint
arXiv:1312.5851.
Nair, V., and Hinton, G. E. 2010. Rectified linear units
improve restricted boltzmann machines. In ICML, 807–814.
Ragan-Kelley, J.; Barnes, C.; Adams, A.; Paris, S.; Durand,
F.; and Amarasinghe, S. 2013. Halide: a language and
compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. ACM SIGPLAN No-
tices 48(6):519–530.
Russakovsky, O.; Deng, J.; Huang, Z.; Berg, A. C.; and Fei-
Fei, L. 2013. Detecting avocados to zucchinis: What have
we done, and where are we going? In ICCV, 2064–2071.
Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.;
and LeCun, Y. 2013. Overfeat: Integrated recognition, lo-
calization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229.
Simard, P. Y.; Steinkraus, D.; and Platt, J. C. 2003. Best
practices for convolutional neural networks applied to visual
document analysis. In International Conference on Docu-
ment Analysis and Recognition, volume 2, 958–958.
Szegedy, C.; Toshev, A.; and Erhan, D. 2013. Deep neural
networks for object detection. In NIPS, 2553–2561.
Wan, L.; Zeiler, M. D.; Zhang, S.; LeCun, Y.; and Fergus, R.
2013. Regularization of neural networks using dropconnect.
In ICML, 1058–1066.
Xu, L.; Ren, J.; Liu, C.; and Jia, J. 2014. Deep convolutional
neural network for image deconvolution. In NIPS.

