Deep Edge-Aware Filters

International Conference on Machine Learning

can't be applied to other

filters

Li Xu¹, Jimmy SJ. Ren¹, Qiong Yan¹, Renjie Liao², Jiaya Jia²

¹SenseTime Group Limited ²The Chinese University of Hong Kong

Code & More Results: http://lxu.me/projects/deepeaf/

SENSETIME

filter

Input image

PSNR

Ton mel

Our learned I 0

+ bilateral effect

Overview

There are many edge-aware filters varying in their construction forms and filtering properties. We made the attempt to learn a big and important family of edge-aware operators from data. Our method gives rise to a powerful tool to approximate various filters without knowing the original models and implementation details. Fast approximation for complex edge-aware filters and achieves up to 200x acceleration. Fast speed can also be achieved when creating new effects using spatially varying filter or filter combination.

E-A Filters, fundamental in Image Processing

Anna Anna		-0.05
		Network
Abstraction	Edge extraction	256-channel map
Detail enhancement	Tone mapping	
		8.18
A Decade Effort in	Benefits of Our Unified E-A	$\partial_x I$
Accelerating One Filter	Filter Framework	$1 \sum \left(1 \right) T$
- Bilateral filter proposed in 1998	Bay One Gri FREE	$Win \overline{D} \sum_{i} \left\{ \overline{2} \ \mathcal{F}_{W} \right\}$
- Bilateral Grid proposed in 2007	Optimize for one get ALL	Imaga Basanat
		inage Reconstr
- Much more flitters out there	Ideal for hardware	Traditional approach: Solve a Pos equation
- New filters proposed every		Direct integration may be problematic.
year	More conhistigated new	The network output may not be
- Conventional acceleration	wore sophisticated new	
technique is not general,	effects (see results =>)	Our approach: Solve

Optimize in Color VS. Gradient Domain New Effects Which Are Hard For Traditional Filters Spatial variant Filter Combo Optimize in the color domain Optimize in the gradient domain 50 Ground truth targe Filter **Network Architecture** copycat a $\mathcal{F}_{\mathbf{W}}(\partial_{\mathbf{y}}I)$ $\mathscr{F}'_{\mathbf{W}}(\partial_x I)$ Convolutional Neural Network Reconstruction Input $\mathsf{Min} \quad \frac{1}{D} \sum \left\{ \frac{1}{2} \| \mathcal{F}_{\mathbf{W}}(\partial I_i) - \partial \mathcal{L}(I_i) \|^2 + \lambda \Phi(\mathcal{F}_{\mathbf{W}}(\partial I_i)) \right\}$ Image Reconstruction from Gradients Fraditional approach: Solve a Possion

 $||S-I||^{2} + \beta \left\{ ||\partial_{x}S - \mathcal{F}'_{\mathbf{W}}(\partial_{x}I)||^{2} + ||\partial_{y}S - \mathcal{F}_{\mathbf{W}}(\partial_{y}I)||^{2} \right\}$

Br Br 4	× × ¢	Reading Shop	Tr. Bur	20, 10, 10, 20, 20	s sur	Br. Br	AV Y	BJ Bellin e	HOL IN WAY	PO. BL	Face File	
Average PSNRs and SSIMs of our approximation of various filtering techniques												
Resolution	QVGA	VGA	720p	1080p	2k]						
BLF Grid	0.11	0.41	0.98	2.65	3.03	RegCov	59.05	229.68	577.82	1386.95	1571.91	
IBLF	0.46	1.41	3.18	8.36	12.03	Shock	0.45	3.19	8.48	23.88	26.93	
WLS	0.71	3.25	9.42	28.65	33.73	LLF	207.93	849.78	2174.92	5381.36	6130.44	
L0	0.36	1.60	4.35	11.89	15.07	WMF	0.94	3.54	4.98	14.32	15.41	
RTV	1.22	6.26	16.26	42.59	48.25	RGF	0.35	1.38	3.42	9.02	10.31	
Running time for different resolution images on					Ours	0.23	0.83	2.11	5.78	6.65		

After L0 smooth

Quantitative Evaluation

After bilateral filter

SSIM

Blindly learning Photoshop filters without knowing its implementation

desktop PC (Intel i7 3.6GHz with 16GB RAM, Geforce GTX 780 Ti).