Efficient Deep Image Denoising via Class Specific Convolution
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We use the above PCN to classify pixels into different classes and then learn different weights for
different classes in the proposed class specific convolution (CSConv). Specifically, the i-th learnable
weights Wi of CSConv will be fetched from the filter bank W and used to filter the input feature Q(m, n,

structures have been applied. However, the computational
efficiency of the network remains to be improved for the sake of
deployment on mobile devices.

To address the

In experiment, the proposed CS-EDSR and CS-CARN achieves competitive denoising performance
on various datasets and noise levels, capable of better removing noises while preserving the
correct shape and texture details while having much less computational cost than baselines.
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In addition, the local gradient statistics estimated from RAISR's
eigenanalysis are not very accurate under noises, therefore it
cannot distinguish different types of textures very well.

relatively clear details, whereas the results of EDSR are over-smoothed.

CSConv layers can be integrated into existing denoising network architectures by directly replacing the
conv layers. We integrate the proposed CSConv into the EDSR and CARN architecture as the proposed
CSConv-based denoising convolutional network (CSDN) in our experiments. To make the proposed - We present a way of deep image denoising by divide and conquer

CSDN more efficient, we reduce the filter channels by a factor of four. + Aclassification network is used for robust and efficient pixel classification

« (CSConv layers are proposed for efficient denoising with spatially variant kernels
« Competitive performance is achieved with much less computational cost
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